

Drell-Yan measurements in COMPASS

C. Quintans, LIP-Lisbon

 13^{th} April 2011, DIS 2011

- ♦ The Drell-Yan process
- Drell-Yan with transversely polarized target
- Drell-Yan at COMPASS: why and how
- ♦ COMPASS sensitivity to TMD PDFs
- Summary

Drell-Yan process

Quark-antiquark annihilation, with dilepton production:

$$p_a = \sqrt{s}/2 \ x_a(1,0,1)$$

$$p_b = \sqrt{s}/2 \ x_b(1, 0, -1)$$

$$q = p_a + p_b = (q_0, 0, q_L)$$

(massless quarks, collinear γ^*)

$$s = (P_A + P_B)^2 = \frac{\hat{s}}{x_a x_b} = \frac{\hat{s}}{\tau} \implies \tau = x_a x_b = \frac{\hat{s}}{s} = \frac{Q^2}{s} = \frac{M_{\mu\mu}^2}{s}$$

The hadronic cross-section is given by a convolution of parton distribution functions:

$$\frac{d\sigma}{dQ^2} = \sum_{q=u,d,s} \int dx_a \int dx_b \, (q(x_a)\bar{q}(x_b) + \bar{q}(x_a)q(x_b)) \, \hat{\sigma_0} \, \delta(Q^2 - \hat{s})$$

C. Quintans Drell-Yan measurements in COMPASS

Drell-Yan angular distribution

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega} = \frac{3}{4\pi(\lambda + 3)} \left[1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi \right]$$

The collinearity hypothesis would imply $\lambda = 1$ and $\mu = \nu = 0$.

But experiments at CERN (NA10) and Fermilab (E615) measured important deviations from the collinearity hypothesis, with a modulation of $\cos 2\phi$ up to 30%!

This means we cannot neglect the intrinsic transverse momentum k_T of quarks inside hadrons. Taking this into account, the γ^* transverse momentum is $q_T = k_{Ta} + k_{Tb}$.

Nowadays the $\cos 2\phi$ modulation is believed to naturally arise from a product of 2 transverse momentum dependent (TMD) PDFs – the so-called Boer-Mulders PDFs of target and beam quarks interacting.

Parton distribution functions

At leading order, 3 PDFs are needed to describe the structure of the nucleon in the collinear approximation.

But if one takes into account also the quarks k_T , 8 PDFs are needed.

This TMD PDFs approach is valid when $Q\gg q_T\gtrsim \Lambda_{QCD}$: like in Drell-Yan at relatively small q_T , where we have $M_{\mu\mu}\gg p_T^{\mu\mu}$.

In the region $Q, q_T \gg \Lambda_{QCD}$, the collinear twist-3 approach should be used instead.

Single polarized Drell-Yan

In the single polarized DY case (target transversely polarized), the general expression of the Drell-Yan cross-section (LO) is:

$$\frac{d\sigma}{d^4q d\Omega} = \frac{\alpha^2}{Fq^2} \hat{\sigma}_U \{ (1 + D_{[\sin^2 \theta]} A_U^{\cos 2\phi} \cos 2\phi)
+ |\vec{S}_T| [A_T^{\sin \phi_S} \sin \phi_S + D_{[\sin^2 \theta]} (A_T^{\sin(2\phi + \phi_S)} \sin(2\phi + \phi_S)
+ A_T^{\sin(2\phi - \phi_S)} \sin(2\phi - \phi_S))] \}$$

- lack A: azimuthal asymmetries $A_U^{\cos 2\phi}$, $A_T^{\sin \phi_S}$, $A_T^{\sin (2\phi + \phi_S)}$ and $A_T^{\sin (2\phi \phi_S)}$
- D: depolarization factor
- S: target spin components

•
$$F = 4\sqrt{(P_a \cdot P_b)^2 - M_a^2 M_b^2}$$

 \bullet $\hat{\sigma}_U$: part of the cross-section surviving integration over ϕ and ϕ_S .

Azimuthal asymmetries

Each asymmetry contains a convolution of 2 PDFs, one from target and another from beam quarks.

- $lack A_U^{\cos 2\phi}$: access to Boer-Mulders functions of incoming hadrons;
- $lack A_T^{\sin \phi_S}$: access to the Sivers function of target nucleon;
- $A_T^{\sin(2\phi+\phi_S)}$: access to Boer-Mulders function of beam hadron and to pretzelosity of target nucleon;
- $A_T^{\sin(2\phi-\phi_S)}$: access to Boer-Mulders function of beam hadron and to transversity of the target nucleon.

→all to be measured experimentally

All these azimuthal asymmetries are expected to be sizable in the valence quarks region – where we measure.

Theory predictions: $A_T^{\sin\phi_S}$

Sivers for DY 4.0 - 9.0 GeV/c², from π^- (190 GeV/c) p^{\uparrow} collisions

- solid and dashed: Efremov et al,PLB612(2005)233;
- dot-dashed: Collins et al,PRD73(2006)014021;
- solid,dot-dashed: Anselmino et al, PRD79(2009)054010;
- -boxes: Bianconi et al, PRD73(2006)114002;
- short-dashed: Bacchetta et al,PRD78(2008)074010.

Theory predictions: $A_U^{\cos2\phi}$

Boer-Mulders for DY 4.0 - 9.0 GeV/c², from π^- (190 GeV/c) p^{\uparrow} collisions

B. Zhang et al, Phys. Rev. D77 (2008) 054011; with π BM parametrization from D. Boer, Phys. Rev. D60 (1999) 014012 on NA10 data.

Theory predictions: $A_T^{\sin(2\phi-\phi_S)}$

BM \otimes transversity, for DY 4.0 - 9.0 GeV/c², from π^- (190 GeV/c) p^{\uparrow} collisions

A.N. Sissakian, O.Yu. Shevchenko, A.P. Nagaitsev, O.N. Ivanov, Phys.Part.Nucl.41:64-100,2010.

Theory predictions: $A_T^{\sin(2\phi+\phi_S)}$

BM \otimes pretzelosity, for DY 4.0 - 9.0 GeV/c², from π^- (190 GeV/c) p^{\uparrow} collisions

A. Efremov, B. Pasquini, P. Schweitzer, F. Yuan, in preparation.

Also recent prediction from Zhun Lu, Bo-Qiang Ma and Jun She, with similar results.

TMD PDFs in SIDIS

Presently, our knowledge of PDFs in transversely polarized nucleons comes from SIDIS measurements (COMPASS and HERMES).

In semi-inclusive deep inelastic scattering the measured asymmetry results from the convolution of a nucleon PDF with a fragmentation function for the final state hadron.

The Sivers asymmetry was measured in COMPASS and HERMES.

The asymmetry is positive for h^+ on proton target (the effect in HERMES is larger by a factor 2 than in COMPASS).

(Non-)Universality of TMD PDFs

Because the Sivers and Boer-Mulders PDFs are "time-reversal odd", they are expected to change sign when measured from SIDIS or from Drell-Yan:

$$f_{1T}^{\perp}(DY) = -f_{1T}^{\perp}(SIDIS)$$

$$h_1^{\perp}(DY) = -h_1^{\perp}(SIDIS)$$

This sign change is considered a crucial test of non-perturbative QCD: the QCD TMD factorization and the TMD approach itself.

In COMPASS, we have the opportunity to test this sign change using the same spectrometer and transversely polarized target.

The COMPASS Experiment at CERN

Drell-Yan at COMPASS

- Availability of hadron beams (100 280 GeV/c): π^- beam @190 GeV/c (4% kaons contamination, <1% \bar{p}).
- A longitudinal/transversely polarized target system:

material	6LiD	NH_3
polarization	50%	90%
dilution factor	0.4	0.22

- Long hadron absorber and beam plug downstream of the target.
- Muons angular acceptance: $30 < \theta < 140$ mrad.
- Dimuon trigger based on hodoscope signals coincidence, homothetic and pointing to the target.
- Long relaxation time of target polarization guaranteed by larger beam spot ($\sigma \approx 1 \text{cm}$) \Rightarrow loose very small angle muons.

High mass Drell-Yan

Detailed simulations using PYTHIA and GEANT. Results were compared with published cross-sections from past Drell-Yan experiments – good agreement.

$\sigma^{DY}_{\mu\mu}$ (nb)	$2 < M_{\mu\mu} < 2.5$	$4 < M_{\mu\mu} < 9$ (GeV/c ²)
π^- p @190 GeV/c: PYTHIA (LO)	0.63	0.14
π^- p @190 GeV/c: PYTHIA*K-factor	1.26	0.28

Even if the cross-section is low, dimuons with $4. \leq M_{\mu\mu} < 9$. GeV/c² are the ideal sample to study azimuthal asymmetries in Drell-Yan, due to negligible background contamination.

COMPASS acceptance

 π^- (190GeV/c) on p^{\uparrow} interactions: u-quark dominance.

Valence quarks in the nucleon are probed.

In COMPASS, for DY $4 \le M_{\mu\mu} \le 9$ GeV/c², $x_p > 0.05$

→ also the most favorable region to measure asymmetries, according to theory predictions.

Global acceptance for high mass dimuons: $\approx 35\%$

Expected event rates

With a beam intensity $I_{beam} = 6 \times 10^7$ particles/second, a luminosity of $L = 1.2 \times 10^{32}~cm^{-2}s^{-1}$ can be obtained \implies expect 800/day DY events with $4 < M_{\mu\mu} < 9$ GeV/c².

Assuming 2 years of data-taking (140 days/year), one can collect:

♦ 230 000 events in DY HMR

This will translate into a statistical error in the asymmetries:

Asymmetry	Dimuon mass (GeV/ c^2)		
	$2 < M_{\mu\mu} < 2.5$	J/ ψ region	$4 < M_{\mu\mu} < 9$
$\delta A_U^{\cos 2\phi}$	0.0020	0.0013	0.0045
$\delta A_T^{\sin\phi_S}$	0.0062	0.0040	0.0142
$\delta A_T^{\sin(2\phi + \phi_S)}$	0.0123	0.008	0.0285
$\delta A_T^{\sin(2\phi - \phi_S)}$	0.0123	0.008	0.0285

 \hookrightarrow Possibility to study the asymmetries in several x_F bins.

Feasibility studies

Beam tests were done in 2007, 2008 and 2009 to study the feasibility of the measurement.

- ◆ The target temperature does not seem to increase significantly with the hadron beam, long polarization relaxation times measured (2007 beam test).
- Reasonable occupancies in the detectors closer to the target can only be achieved if a hadron absorber and beam plug is used (2008 beam test).
- Radiation conditions are within safety limits up to a beam intensity of $6 \times 10^7 \ \pi^-$ /second (measurements during all beam tests)
- lacktriangle Physics simulation were validated, within statistical errors (J/ ψ peak and combinatorial background, in 2007 and 2009 beam tests).

Beam test 2009 results

 π^- beam 190 GeV/c on a plastic 2-cells target. A hadron absorber and a beam plug were used. The test lasted \approx 3 days.

Reasonable Z_{vertex} separation, allowing to distinguish the 2 target cells and the absorber.

Mass resolution as expected, but worse than in previous experiments ⇒ reconstruction program still needs optimization.

Combinatorial background (from uncorrelated π decays) is estimated using the measured like-sign $\mu\mu$ distributions: the presence of the absorber reduces the background by a factor \approx 10 at $M_{\mu\mu}=2$ GeV/c².

Optimization studies

Hadron absorber, beam plug and large area dimuon trigger are the main new components of the project. Optimization studies are ongoing.

- 2 target cells (55 + 55 cm), spaced by 20 cm, filled with NH_3 , inside a 0.4T dipole.
- lack Absorber of Al_2O_3 , 2.4 m long (+ steel), with beam plug (W) inside, 1.2 m long.
- lack 2 large area hodoscopes, for dimuon trigger in the 1^{st} spectrometer.
- Possibility to add a vertexing detector between target and absorber.

Summary

- ♦ The polarized Drell-Yan measurement is part of the new COMPASS-II project.
- Proposal was approved by SPSC/CERN for a first period of 3 years (from 2012) including 1 year for Drell-Yan.
- Feasibility of the measurement was shown in the beam tests already performed.
- Sivers and Boer-Mulders PDFs sign change when measuring in Drell-Yan or in SIDIS will be checked.
- ♦ The expected statistical accuracy reached in 2 years will allow to check theory predictions and extract TMD PDFs, namely Sivers and Boer-Mulders, as well as the transversity PDF.

SPARES: J/\psi-DY duality

 J/ψ and γ being vector particles, the analogy between J/ψ and DY production mechanisms might be of interest:

$$\pi^- p^{\uparrow} \to J/\psi X \to \mu^+ \mu^- X$$
 $\pi^- p^{\uparrow} \to \gamma^* X \to \mu^+ \mu^- X$

 J/ψ production via $q\bar{q}$ annihilation dominates at low-energies, justifying such analogy – J/ψ -DY duality.

From the study of J/ψ production in the dileptons decay channel:

- lacktriangle Check duality hypothesis polarized J/ ψ production cross-section
- Access PDFs from J/ ψ events larger statistics available

Using secondary hadron beams it is possible to vary the beam energy (from 50 to 200 GeV), to study different J/ ψ production mechanisms.

C. Quintans Drell-Yan measurements in COMPASS

SPARES: Comparing with theory predictions

SPARES: Radiation conditions

COMPASS is a ground-level experiment, thus radiation conditions must be monitored, with appropriate shielding surrounding the target + absorber region:

FLUKA simulations describing the polarized target, absorber, beam plug and shielding, and the spectrometer, show that with beam intensity 6×10^8 to 1×10^9 π^-/spill the particles fluence is still below radio-protection limits, and safe for the detectors downstream.